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We generalize the Toda lattice(or Toda chain) equation to the square lattice, i.e., we construct an integrable
nonlinear equation for a scalar field taking values on the square lattice and depending on a continuous(time)
variable, characterized by an exponential law of interaction in both discrete directions of the square lattice. We
construct the Darboux-Bäcklund transformations for such lattice, and the corresponding formulas describing
their superposition. We finally use these Darboux-Bäcklund transformations to generate examples of explicit
solutions of exponential and rational type. The exponential solutions describe the evolution of one and two
smooth two-dimensional shock waves on the square lattice.
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I. INTRODUCTION

The Toda lattice[1–3]

d2Qm

dt2
= DmeDmQm−1, s1d

where Dmfm= fm+1− fm is the difference operator andQ
=Qmstd is a dynamical function on a one-dimensional lattice
smPZd, is one of the most famous integrable nonlinear lat-
tice equations. It describes the dynamics of a one-
dimensional physical lattice whose masses are subjected to
an interaction potential of exponential type. The infinite, fi-
nite, and periodic Toda lattice(1), as well as its numerous
extensions[4–12], have applications in various other physi-
cal and mathematical contexts[13–19].

In this paper we introduce the following integrable gener-
alization of the Toda law(1) (i.e., the law characterized by an
exponential interaction between nearest neighbors) to a two-
dimensional(2D) lattice:

Cm,n
d

dt
S 1

Cm,n

dQm,n

dt
D = DmsCm,nCm−1,ne

DmQm−1,nd

+ DnsCm,nCm,n−1e
DnQm,n−1d, s2ad

Cm+1,n+1

Cm,n
= e−DmDnQm,n, s2bd

whereQ=Qm,nstd andC=Cm,nstd are dynamical functions on
the square lattice fsm,ndPZ2g and Dmfm,n= fm+1,n

− fm,n, Dnfm,n= fm,n+1− fm,n are the difference operators in the
m andn directions.

Starting with the linear five-point scheme(7) [20], in Sec.
II we construct a Lax pair for Eq.(2); in Sec. III we construct
the Darboux-Bäcklund transformations(DBTs) for this 2D
Toda lattice, and the corresponding formulas describing the
superposition of such DBTs; in Sec. IV we use these trans-
formations to construct explicit solutions of exponential and
rational type of thes2+1d-dimensional Toda lattice(2).

We remark that, in the literature related to integrable sys-
tems, there exist already threes2+1d-dimensional generali-
zations of the Toda lattice(1). The first one is obtained by
replacing the second derivatived2/dt2 in Eq. (1) by the hy-
perbolic operator]2/]x ]y [8] (this equation one can find
already in the book by Darboux[21]), or by the elliptic op-
erator]2/]z ] z̄. In this equation, therefore, the scalar fieldQ
depends on two continuous variablesx,y and on one discrete
variablem: Qmsx,yd. The second generalization[5] can be
viewed as a variant of the first, in which one of the two
continuous variables, sayx, is suitably discretized. The third
generalization[6,7] is obtained by discretizing bothx andy
variables. In the generalization(2) we propose in this paper,
instead, the scalar fieldQ depends on the continuous time
variable t, through the Sturm-Liouville operator in the left
hand side of Eq.(2), and on the two discrete indicessm,nd
PZ2 of the square latticefQ=Qm,nstdg, through the exponen-
tial law of interaction between nearest neighbors in bothm
andn directions.

We remark that as2+1d-dimensional generalization of the
Volterra system on the square lattice has recently appeared
[22].

II. THE 2D GENERALIZATION OF THE TODA LATTICE

The Lax pair(zero curvature representation) for the Toda
lattice can be written in the following form[23,24]:
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Gm

Gm+1
fm+1 +

Gm−1

Gm
fm−1 − Fmfm = lfm, s3ad

dfm

dt
=

Gm

Gm+1
fm+1 −

Gm−1

Gm
fm−1, s3bd

wherel is the constant eigenvalue of the self-adjoint three-
point scheme(3a), Gmstd , Fmstd are dynamical functions on
the lattice, the eigenfunctionfmst ,ld solves simultaneously
the Lax pair(3), and the Toda fieldQ is related toG ,F in the
following way:

Fm = −
dQm

dt
, Gm = e−Qm/2. s4d

Key progress toward the generalization of the Toda law
(1) to a two-dimensional lattice has been recently made in
[20]; in that paper, devoted to the investigation of discretiza-
tions of elliptic operators on 2D lattices admitting Darboux
transformations(DTs), the following results were, in particu-
lar, established.

(1) The linear and self-adjoint five-point scheme on the
star of the square lattice,

L5c̃m,n ª am,nc̃m+1,n + am−1,nc̃m−1,n + bm,nc̃m,n+1

+ bm,n−1c̃m,n−1 − fm,nc̃m,n = 0, s5d

a natural discretization of the self-adjoint ellipticsif AB.0d
operator

sACxdx + sBCydy = DC s6d

in canonical form, admits DTs.
(2) The five-point scheme(5) admits a distinguished

gauge equivalent form:

LSchIntcm,n ª
Gm,n

Gm+1,n
cm+1,n +

Gm−1,n

Gm,n
cm−1,n +

Gm,n

Gm,n+1
cm,n+1

+
Gm,n−1

Gm,n
cm,n−1 − Fm,ncm,n = 0, s7d

obtained from Eq.s5d via the following gauge transforma-
tion:

LSchInt=
gm,n

Gm,n
L5

gm,n

Gm,n
, s8d

with Fm,n= fm,nsgm,n
2 /Gm,n

2 d, whereg andG are defined by

am,ngm+1,n = bm,ngm+1,n,

Gm,n = Îam,ngm,ngm+1,n = Îbm,ngm,ngm,n+1. s9d

The linear problem(7), a natural 2D generalization of the
linear problem(3a), satisfies the following basic properties:
(i) it possesses DTs[inherited from the DTs of Eq.(5)]; (ii ) it
reduces, in the natural continuous limit, to the 2D
Schrödinger equation

cxx + cyy + usx,ydc = 0. s10d

For these two reasons the self-adjoint five-point scheme(7)
was identified in[20] as a proper “integrable” discretization
of the 2D Schrödinger equation, a good starting point in the
search for integrable discretizations of the nonlinear symme-
tries associated with the spectral problem(10) and in the
search for an integrable generalization of the Toda equation
to a square lattice.

The two-dimensional generalization of the Lax pair(3)
proposed in this paper is indeed based on the linear problem
(7), and reads

Gm,n

Gm+1,n
cm+1,n +

Gm−1,n

Gm,n
cm−1,n +

Gm,n

Gm,n+1
cm,n+1 +

Gm,n−1

Gm,n
cm,n−1

= Fm,ncm,n,

dcm,n

dt
=

Cm,n

2
F Gm,n

Gm+1,n
cm+1,n −

Gm−1,n

Gm,n
cm−1,n +

Gm,n

Gm,n+1
cm,n+1

−
Gm,n−1

Gm,n
cm,n−1G . s11d

It is easy to verify that this system of linear equations for the
eigenfunctioncm,nstd is compatible if and only if the coeffi-
cientsG ,F ,C satisfy the following nonlinear equations:

dFm,n

dt
= Cm+1,nS Gm,n

Gm+1,n
D2

− Cm−1,nSGm−1,n

Gm,n
D2

+ Cm,n+1S Gm,n

Gm,n+1
D2

− Cm,n−1SGm,n−1

Gm,n
D2

,

dGm,n

dt
=

1

2
Cm,nFm,nGm,n,

Cm+1,n+1

Cm,n
= SGm+1,n+1Gm,n

Gm+1,nGm,n+1
D2

. s12d

Equations (12) can be conveniently rewritten as the
s2+1d-dimensional generalization(2) of the exponential in-
teraction law of Toda, in terms of the scalar fieldQm,nstd
defined by

Fm,nCm,n = −
dQm,n

dt
, Gm,n = e−Qm,n/2. s13d

In the one-dimensional limit in whichcm,nstd depends
trivially on n and the coefficientsG ,F ,C do not depend onn,

cm,nstd = fmstds− zdn, Gm,n = Gm, Fm,n = Fm, Cm,n = Cm,

s14d

it follows from Eq. (2b) that C is an arbitrary function oft
independent ofm, Cmstd=Cstd, and Eq.(2a) reduces to

1

Cstd
d

dt
S 1

Cstd
dQm

dt
D = DmeDmQm−1. s15d

Suitably rescalingt [or choosingCstd=1], one finally recov-
ers the Toda lattice(1) and its Lax pair(3), with l=z+z−1.
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We first remark that the five-point schemes(11) on the
star of the square lattice are the simplest and most natural
generalization of the three-point schemes(3). Therefore we
expect that our Toda 2D lattice(2) will be the simplest inte-
grable generalization of Eq.(1) on the square lattice.

We also remark that the Toda 2D-lattice system(2) can be
rewritten as a single equation, observing that Eq.(2b) is
identically satisfied by the following parametrization:

Gm,n
2 =

tm,n

tm+1,n+1
, Cm,n =

tm+1,ntm,n+1

tm,ntm+1,n+1
s16d

in terms of the single scalar fieldtm,n. Then the system(2)
reduces to the single equation

W†tm+1,ntm,n+1,Wftm+1,n+1,tm,ng‡

= tm+1,n
2 stm,ntm,n+2 − tm+1,n+1tm−1,n+1d

+ tm,n+1
2 stm,ntm+2,n − tm+1,n+1tm+1,n−1d, s17d

where

Wfa,bg ª aḃ − ȧb s18d

is the usual Wronskian of the two functionsa andb. It turns
out [25] that the scalar functiontm,nstd is related to thet
function of the Kadomtsev-Petviashvili hierarchy of type B
(BKP hierarchy) [26]; therefore Eq.(17) gives thet-function
formulation of thes2+1d-dimensional Toda system(2).

If the t function depends only onm, tm,nstd=tmstd, Eq.
(17) reduces to the equation

tm+1
2 Hftmg − tm

2 Hftm+1g = 0, s19d

where

Hftmg ª ẗmtm − ṫm
2 + tm+1tm−1 − tm

2 , s20d

implying that

Hftmg = fstdtm
2 , s21d

with fstd an arbitrary function oft. By the change of variable
t̃mstd=expf−ystdgtmstd, with ÿstd= fstd, we recover the
t-function formulation[4] Hft̃mg=0 of the Toda lattice(1).

We finally remark thatF ,C=const andG=esCF/2dt is the
trivial solution of Eq.(12); correspondingly,Q=−FCt grows
linearly in time. Solutions that are perturbations of this solu-
tion will exhibit such a linear blowup in time, which can be
removed by introducing the change of variablesQm,n=Pm,n
−FCt+d. Then Eq.(2) becomes

Cm,n
d

dt
F 1

Cm,n
SdPm,n

dt
+ FCDG = DmsCm,nCm−1,ne

DmPm−1,nd

+ DnsCm,nCm,n−1e
DnPm,n−1d,

Cm+1,n+1

Cm,n
= e−DmDnPm,n. s22d

We end this section by remarking that algebrogeometric
solutions of the eigenvalue problem for a generic five-point
scheme were constructed in[27].

III. DARBOUX-BÄCKLUND TRANSFORMATIONS AND
THEIR SUPERPOSITION

It is a straightforward(but long) calculation to verify that
the DBTs for the 2D generalization of the Toda lattice(12)
and (2) read as follows:

DmSG8

G
uc8D

m,n
=

Gm,n−1

Gm,n
um,num,n−1D̃−n

cm,n

um,n
,

DnSG8

G
uc8D

m,n
= −

Gm−1,n

Gm,n
um,num,n−1D̃−m

cm,n

um,n
,

d

dt
SG8

G
uc8D

m,n
= Cm,n

Gm−1,nGm,n−1

Gm,n
2 um−1,num,n−1

3Scm−1,n

um−1,n
−

cm,n−1

um,n−1
D , s23d

Gm,n8 2 = sGudm−1,n−1
Gm,n

um,n
, s24ad

Cm,n8 =
sGudm−1,nsGudm,n−1

sGudm,nsGudm−1,n−1
Cm,n, s24bd

Fm,n8 = sGudm−1,n−1F 1

sGudm−1,n
+

1

sGudm,n−1
G +

um,n

Gm,n
FSG

u
D

m−1,n

+ SG

u
D

m,n−1
G , s24cd

where D̃−mfm,n= fm,n− fm−1,n and D̃−n= fm,n− fm,n−1. In these
equations,um,nstd is a solution of the Lax pair(11) for the
coefficientsGm,n, Fm,n, Cm,n; cm,n8 std in Eq. (23) is the trans-
formed(via um,n) solution of the Lax pair(11), for the trans-
formed [via Eq. (24)] coefficientsGm,n8 , Fm,n8 , Cm,n8 .

The so-called spatial part of the above DBTs was already
written in [20]; the temporal part, describing the time depen-
dence of the transformed solutioncm,n8 std of Eq. (11), and the
transformation law(24b) for the coefficientCm,nstd were not.

It is well known [28] that it is possible to combine DBTs
of a given integrable system, to construct superposition for-
mulas and a permutability diagram of DBTs. For the 2D
Toda lattice(12) and(2) it is possible to prove the following
result(see also[25] for the Bianchi permutability diagram of
the general self-adjoint scheme on the star of the square lat-
tice). Consider a solutionsGm,n,Fm,n,Cm,nd of the 2D Toda
lattice (12) and(2), and letum,n

s1d andum,n
s2d be two independent

solutions of the Lax pair(11), corresponding to the coeffi-
cients Gm,n, Fm,n, Cm,n. Superimposing the two DBTs(23)
with respect toum,n

s1d and um,n
s2d , one obtains the new solution

sGm,n
s12d ,Fm,n

s12d ,Cm,n
s12dd of the nonlinear system(12) and (2)

through the following formulas:

sGm+1,n+1
s12d d2 = sGm,nd2 Sm,n

Sm+1,n+1
,
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Fm+1,n+1
s12d = Fm,n +

1

Sm,n+1

Gm−1,n

Gm,n+1
sum−1,n

s1d um,n+1
s2d − um,n+1

s1d um−1,n
s2d d

+
1

Sm+1,n

Gm,n−1

Gm+1,n
sum+1,n

s1d um,n−1
s2d − um,n−1

s1d um+1,n
s2d d

=
Sm,nSm+1,n+1

Sm+1,nSm,n+1
FFm,n +

1

Sm+1,n+1

Gm,n
2

Gm+1,nGm,n+1

3sum,n+1
s1d um+1,n

s2d − um+1,n
s1d um,n+1

s2d d +
1

Sm,n

Gm−1,nGm,n−1

Gm,n
2

3sum,n−1
s1d um−1,n

s2d − um−1,n
s1d um,n−1

s2d dG ,

Cm+1,n+1
s12d = SGm+1,nGm,n+1

Gm,nGm+1,n+1
D2Sm+1,nSm,n+1

Sm,nSm+1,n+1
Cm+1,n+1, s25d

where the functionSm,n is obtained by integrating the first
order compatible equations

d

dt
Sm,n = Cm,n

Gm−1,nGm,n−1

Gm,n
2 sum,n−1

s1d um−1,n
s2d − um−1,n

s1d um,n−1
s2d d,

Sm+1,n − Sm,n =
Gm,n−1

Gm,n
sum,n−1

s1d um,n
s2d − um,n

s1d um,n−1
s2d d,

Sm,n+1 − Sm,n =
Gm−1,n

Gm,n
sum,n

s1d um−1,n
s2d − um−1,n

s1d um,n
s2d d. s26d

This scheme is often used to construct the two-soliton solu-
tion knowing the one-soliton solution of the system(in this
caseum,n

s1d and um,n
s2d are the eigenfunctions of the one-soliton

solution corresponding to two different sets of parameters).

IV. SOLUTIONS OF EXPONENTIAL AND RATIONAL
TYPE

The existence of DBTs is considered one of the basic
properties of an integrable nonlinear system. In particular, it
allows one to construct iteratively solutions from simpler
solutions, via an endless procedure.

In this section we show some examples of explicit solu-
tions of exponential and rational type of the 2D Toda lattice
(2), obtained using the DBTs(24).

We consider as starting solution of the system(12) the
trivial one, corresponding toF ,C constants andG=esFC/2dt

(for this solutionQ=−FCt) and, correspondingly, we look
for an exponential solution of the Lax pair(11):

cm,nstd = eam+bn+vt+d, s27d

obtaining for the coefficientsa ,b ,v the following equations:

cosha + coshb =
F

2
, s28ad

sinha + sinhb =
v

C
. s28bd

These equations can be interpreted in the following way:
given the constantsF ,C, Eq. (28a) establishes a constraint
between the “wave numbers”a andb; once this constraint is
satisfied, Eq.(28b) gives the “dispersion relation”v in terms
of a andb.

Looking for real and nonsingular solutions of exponential
type, in the following we restrict our analysis to the case
F ,C,a ,b ,dPR, postponing the study of other possible
choices to a subsequent work. Then Eq.(28) implies thatF
ù4 and that the parametersa and b=cosh−1sF /2−coshad
must range in the interval

1 , cosha, coshb ø
F

2
− 1, F ù 4 s29d

(if F=4, thena=b=0).
We consider now the following solution of Eq.(11):

um,nstd = coshQm,n
+ std + r coshQm,n

− std,

Qm,n
± std ª am± bn + v±t + d±, v±

ª Cssinha ± sinhbd,

s30d

consisting of a suitable combination of four exponentials of
the type(27), wherea ,b satisfy the constraint(28a), andr
ù0, d± PR.

Applying the DBTs(24) to this basic solution, one obtains
the following dressed solution of the 2D Toda lattice(12)
and (2):

Gm,n82 = e−Qm,n8 std =
coshQm−1,n−1

+ std + r coshQm−1,n−1
− std

coshQm,n
+ std + rcoshQm,n

− std
eFCt,

Cm,n8 std =
fcoshQm−1,n

+ std + r coshQm−1,n
− stdgfcoshQm,n−1

+ std + r coshQm,n−1
− stdg

fcoshQm,n
+ std + r coshQm,n

− stdgfcoshQm−1,n−1
+ std + r coshQm−1,n−1

− stdg
C. s31d
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This solution exhibits, depending on the value ofrù0, the
following different features.

(i) If r=0, we have the simplified expression

Gm,n82 = e−Qm,n8 std =
coshQm−1,n−1

+ std
coshQm,n

+ std
eFCt,

Cm,n8 std =
fcoshQm−1,n

+ stdgfcoshQm,n−1
+ stdg

fcoshQm,n
+ stdgfcoshQm−1,n−1

+ stdg
C. s32d

This solution describes a smooth 2D shock wavesa kinkd;
the shock front is the phasesstraightd line Q+=const,form-
ing with them axis the angle −u, with u=tan−1sa /bd. This
shock wave propagates with speedv+=−sv+/2dsins2ud
3s1/b ,1 /ad. The values ofQm,n8 +FCt ahead and behind
the shock front are, respectively, −sa+bd and a+b; then
the shock strength is 2sa+bd ssee Fig. 1d.

(ii ) If r is a finite positive number, the solution describes
two smooth 2D shock waves with the following features. The
phase(straight) lines Q±=const form with them axis the
angles 7u; they travel with speedsv±=−sv± /2dsins2ud
3s1/b , ±1/ad and, consequently, their intersection pointP
travels with constant speedvP=−C(ssinhad /a ,ssinhbd /b).
In this situation the two shock fronts do not coincide, as

before, with the phase lines; they are now parallel to them
andn axes and intersect inP, dividing thesm,nd plane into
the usual four quadrants. The values ofQm,n+FCt in the first,
second, third, and fourth quadrants are, respectively,a+b ,
−a+b , −sa+bd, anda−b (see Fig. 2).

(iii ) If r is a very small positive parameter, 0,r!1, the
previous two regimes combine in the following way. In the
finite sm,nd plane[or, more precisely, in an inner region of
the orderO(lns1/rd)], the termr coshQ− is negligible and
the expression(32) is a good approximation of the solution,
which then describes the single transversal shock wave of the
regime (i). In the outer region, that term is not negligible
anymore and the regime(ii ) becomes dominant. Both ends of
the transversal shock front bifurcate into two semilines par-

FIG. 1. (Color online) If r=0 anda ,bPR sF.4d, the solution
Qm,n+FCt in Eq. (31) describes a smooth 2D shock wave propa-
gating with velocity v+=−sv+/2dsins2uds1/b ,1 /ad. The shock
front is a straight line forming the angle −u , u=tan−1sa /bd with the
m axis. In this figurea=5, b=4 sF=101d , d±=1, C=1, r=0.

FIG. 2. (Color online) For a ,bPR sF.4d and r=Os1d, the
solution Qm,n+FCt in Eq. (31) describes two shock waves with
fronts parallel to them andn axes. The intersection pointP of these
two fronts travels with velocityvP=−C(ssinhad /a ,ssinhbd /b). In
this figurea=5, b=4 sF=101d , d±=1, C=1, r=1.

FIG. 3. (Color online) A view from the top of the solution for
r=10−7. In the central(finite) region, the single shock prevails; this
single shock matches with the two orthogonal shocks, which prevail
instead in the outer region. In this figurea=5, b=4 sF=101d , d±

=1, C=1, r=10−7.

FIG. 4. (Color online) A generic view of the solution forr
=10−7. In the central(finite) region, the single shock prevails; this
single shock matches with the two orthogonal shocks, which prevail
instead in the outer region. In this figurea=5, b=4 sF=101d , d±

=1, C=1, r=10−7.

INTEGRABLE GENERALIZATION OF THE TODA LAW … PHYSICAL REVIEW E 70, 056615(2004)

056615-5



allel to the m and n axes (see Figs. 3 and 4). One could
actually say that the regime(iii ) is the generic one; but, for
r=Os1d, the inner region is not visible, since it is smaller
than a single elementary square of the square latticesm,nd.
The inner region is visible if it contains at least one elemen-
tary square of the lattice. If the spacing of the square lattice
is 1, a rough extimate for this condition is that
0,r,min(1/suaued ,1 /subued), where e is the Neper
constant.

The possible existence of weblike structures in the inner
region, typical of s2+1d-dimensional soliton models[29],
will be explored in a subsequent work.

Starting with the trivial solutionF=4, C consts⇒G

=e4Ctd of the system(12), it is also possible to construct
rational solutions. It is straightforward to verify, for instance,
that

um,nstd ª mn+ sCt + adm+ sCt + bdn + C2t2 + Csa + bdt + d

s33d

is a polynomial solution of the system(11), wherea, b, d
are arbitrary constant coefficients. Substituting it into the
DBTs (24), one obtains a(singular) rational solution of the
2D Toda lattice. We remark that this solution could have
been derived directly from the solution(31) for a suitable
choice of its free parameters.

ACKNOWLEDGMENTS

This work was supported by the cultural and scientific
agreements between the University of Roma “La Sapienza”
and the Universities of Warsaw and Olsztyn. It was partially
supported by KBN Grant No. 2 P03B 126 22.

[1] M. Toda,Theory of Nonlinear Lattices(Springer-Verlag, Ber-
lin, 1989).

[2] M. Toda, Suppl. Prog. Theor. Phys.45, 174 (1970).
[3] M. Toda and M. Wadati, J. Phys. Soc. Jpn.34, 18 (1973).
[4] R. Hirota, J. Phys. Soc. Jpn.43, 2074(1977); 45, 321(1978).
[5] D. Levi, L. Pilloni, and P. M. Santini, J. Phys. A14, 1567

(1981).
[6] E. Date, M. Jimbo, and T. Miwa, J. Phys. Soc. Jpn.51, 4125

(1982).
[7] R. Hirota, M. Ito, and F. Kako, Prog. Theor. Phys. Suppl.94,

42 (1988).
[8] A. V. Mikhailov, Zh. Eksp. Teor. Fiz.30, 443 (1979).
[9] M. Bruschi, S. Manakov, O. Ragnisco, and D. Levi, J. Math.

Phys. 21, 2749(1980).
[10] S. M. N. Ruijsenaars, Commun. Math. Phys.133, 217(1990).
[11] Y. B. Suris, J. Phys. A29, 451 (1996); 30, 2235(1997).
[12] R. I. Yamilov, in Proceedings of the Eighth Workshop Nonlin-

ear Evolution Equations and Dynamical Systems(World Sci-
entific, Singapore, 1993).

[13] R. Hirota and K. Suzuki, J. Phys. Soc. Jpn.28, 1366(1970).
[14] R. Hirota and J. Satsuma, Suppl. Prog. Theor. Phys.55, 64

(1976).
[15] J. H. H. Perk, Phys. Lett.79A, 3 (1980); H. Au-Yang and J. H.

H. Perk, Physica A144, 44 (1987).
[16] G. W. Gibbons and K. Maeda, Nucl. Phys. B298, 741(1988).
[17] H. Lu, C. N. Pope, and K. W. Xu, Mod. Phys. Lett. A11, 1785

(1996).
[18] H. Lu and C. N. Pope, Int. J. Mod. Phys. A12, 2061(1997).
[19] A. Lukas, B. A. Ovrut, and D. Waldram, Phys. Lett. B393, 65

(1997).
[20] M. Nieszporski, P. M. Santini, and A. Doliwa, Phys. Lett. A

323, 241 (2004).
[21] G. Darboux,Lecons sur la Théorie Genérale des Surfaces

(Gauthier-Villars, Paris, 1889), Vol. II.
[22] X.-B. Hu, C.-X. Li, J. J. Nimmo, and G.-F. Yu(unpublished).
[23] H. Flaschka, Prog. Theor. Phys.51, 703 (1974).
[24] S. V. Manakov, Sov. Phys. JETP40, 269 (1975).
[25] A. Doliwa, P. Grinevich, M. Nieszporski, and P. M. Santini,

e-print nlin.SI/0410046.
[26] E. Date, M. Jimbo, and T. Miwa, J. Phys. Soc. Jpn.52, 766

(1983).
[27] I. M. Krichever, Sov. Math. Dokl.32, 623 (1985).
[28] L. Bianchi, Lezioni di Geometria Differenziale(Enrico Spo-

erri, Pisa, 1903), Vol. II.
[29] K. Maruno and G. Biondini, e-print nlin.SI/0406059.

SANTINI, NIESZPORSKI, AND DOLIWA PHYSICAL REVIEW E70, 056615(2004)

056615-6


