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Integrable generalization of the Toda law to the square lattice
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We generalize the Toda latti¢er Toda chaim equation to the square lattice, i.e., we construct an integrable
nonlinear equation for a scalar field taking values on the square lattice and depending on a cortiimepus
variable, characterized by an exponential law of interaction in both discrete directions of the square lattice. We
construct the Darboux-Bécklund transformations for such lattice, and the corresponding formulas describing
their superposition. We finally use these Darboux-Backlund transformations to generate examples of explicit
solutions of exponential and rational type. The exponential solutions describe the evolution of one and two
smooth two-dimensional shock waves on the square lattice.
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I. INTRODUCTION =frns Anfmn=fmne1—fmn are the difference operators in the

. m andn directions.
The Toda latticg 13 Starting with the linear five-point schenig) [20], in Sec.
d?Q,, Il we construct a Lax pair for Eq2); in Sec. Ill we construct
5 = At (1)  the Darboux-Béacklund transformatiog®BTs) for this 2D
dt Toda lattice, and the corresponding formulas describing the

where A f.=f.,—f, is the difference operator an@  Superposition of such DBTs; in Sec. IV we use these trans-

=Q,(t) is a dynamical function on a one-dimensional lattice formations to construct explicit solutions of exponential and

(me7), is one of the most famous integrable nonlinear lat-"ational type of th&2+1)-dimensional Toda lattic€2).
tice equations. It describes the dynamics of a one- We remark that, in the literature related to integrable sys-

dimensional physical lattice whose masses are subjected 8MS: there exist already thré2+1)-dimensional generali-
an interaction potential of exponential type. The infinite, fi- Zations of the Toda latticel). The 1‘2|r§t one is obtained by
nite, and periodic Toda latticél), as well as its numerous 'eplacing the second derivatieg/dt* in Eq. (1) by the hy-
extensiong4—-12, have applications in various other physi- perbollc.operator&zlax dy [8] (this equation one can find
cal and mathematical contexts3—19. already in the_book. by Darbm{ﬁl]), or by the elliptic op-
In this paper we introduce the following integrable gener_eratorazl&z dz. In thIS. equatlon,_therefore, the scalar fi€)d
alization of the Toda lawd) (i.e., the law characterized by an depends on two continuous variabley and on one discrete

exponential interaction between nearest neighdors two- ~ variablem: Qu(x,y). The second generalizatigb] can be
dimensionalk2D) lattice: viewed as a variant of the first, in which one of the two

continuous variables, say is suitably discretized. The third
d( 1 dQun generalizatior[6,7] is obtained by discretizing bothandy
MmN gt Cnp dt variables. In the generalizatiq®) we propose in this paper,
A0 instead, the scalar fiel® depends on the continuous time
* An(CrmnCmn-187"m1), (28 yariablet, through the Sturm-Liouville operator in the left
hand side of Eq(2), and on the two discrete indicém, n)
Crinel _ —ApALQ e 72 of the square latticBQ=Q,, ,(t)], through the exponen-
— = =€ “minmn, (2b) . . . : . !
Cmn tial law of interaction between nearest neighbors in both
B _ _ _ andn directions.
whereQ=Qmn(t) andC=Cp (1) ar2e dynamical functions on e remark that 42 + 1)-dimensional generalization of the
the square lattice [(m,n)eZ7] and Anfun=fmin  \olterra system on the square lattice has recently appeared

[22].
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r | + iy + U(X, =0. 10
St G - Frgo=Ady (30 bot oGm0, U9
m+1 m For these two reasons the self-adjoint five-point schéme
was identified in[20] as a proper “integrable” discretization
(o P/ T | R of the 2D Schrddinger equation, a good starting point in the
dt = F_m¢w1 - F_m¢m-lv (3b) search for integrable discretizations of the nonlinear symme-

tries associated with the spectral probléf®) and in the
where\ is the constant eigenvalue of the self-adjoint three-search for an integrable generalization of the Toda equation
point scheme&3a), T',(1), F(t) are dynamical functions on to a square lattice.
the lattice, the eigenfunctios(t,\) solves simultaneously The two-dimensional generalization of the Lax péd)
the Lax pair(3), and the Toda fiel® is related td,F in the ~ Proposed in this paper is indeed based on the linear problem

following way: (7), and reads
r - |
dQ _ m,n m in mn 1
Fn=- d_tm’ I,=e Qn/2, (4) Tt Yme1nt ’ﬁm—ln T n+l¢m ne1t ¢mn 1
Key progress toward the generalization of the Toda law = Fm'”"/’m'“’
(1) to a two-dimensional lattice has been recently made in
[20]; in that paper, devoted to the investigation of discretiza- d¢hmn - %[ Tin " _ I‘m—l,nlp + Cn "
tions of elliptic operators on 2D lattices admitting Darboux  dt 2 [Tpon ™ Ton ™8 e ™t
transformationgDTs), the following results were, in particu- r
lar, established. - m‘“‘l,pm’n_l} (12)
(1) The linear and self-adjoint five-point scheme on the P
star of the square lattice, It is easy to verify that this system of linear equations for the
~ ~ ~ ~ eigenfunctiony, (t) is compatible if and only if the coeffi-
Lsthnn = ama¥miin t 8n-1n¥m-1n + Pmntmnet cientsT',F,C satisfy the following nonlinear equations:
+ bm,n—l'ﬂm,n—l - 1:m,n‘/’m,n =0, (5) dFm,n -C 1—‘m,n 2 -C 1—‘m—l,n 2
) ) ) o o dt - m+1,n F m-1,n F
a natural discretization of the self-adjoint ellipti€ AB>0) m+1n m.n
operator Ton |2 TCinet \2
+Cm,n+l<rﬂ> _Cm,n—l( I‘mn 1) y
(AV,), + (BY), =DV (6) m,nv+l mn
in canonical form, admits DTs. Al _ 1. c r
(2) The five-point schemg5) admits a distinguished dt 2 ™mn mnmm
gauge equivalent form:
) Foss r. Conapt _ (Fm,n+1rm,n)2_ 12
Lschintbmn = Ty Umein T 'pm—ln T 1‘//m,n+l Cin Lreanlmne1
m+1n m,n+
F Equations (12) can be conveniently rewritten as the
mn- 1(/,mn 1= Fonthmn=0, (7) (2+1)-dimensional generalizatiof2) of the exponential in-
an teraction law of Toda, in terms of the scalar fieQy,(t)
obtained from Eq(5) via the following gauge transforma- defined by
tion: d
Fm,nCm,n == %v an ~Qmif2 (13)
,C gmnﬁ gmn (8)
Schint= Timn 5rmn' In the one-dimensional limit in whichj;, ,(t) depends

trivially on n and the coefficients',F,C do not depend on,

with F (95n/T'2,), whereg andI" are defined b
o= (G J 0= 02" Tma=Tm Fmn=Fm Crma=Cn,

am,ngm+l,n = bm,ngm+1,nv (14)
, ’ it follows from Eq. (2b) that C is an arbitrary function of
I'in = YamnOmnOme1n = VOmnOmnOmn+1- (99 independent of, C.,(t)=C(t), and Eq.(2a) reduces to
The linear problent7), a natural 2D generalization of the 1 d{ 1 dQn)_ o
linear problem(3a), satisfies the following basic properties: C(t) dt Ft)? ApeimOm-1 (15

(i) it possesses DTgnherited from the DTs of Eq5)]; (ii) it
reduces, in the natural continuous limit, to the 2D Suitably rescaling [or choosingC(t)=1], one finally recov-
Schrédinger equation ers the Toda lattic€l) and its Lax pain(3), with A\=z+z71.

056615-2



INTEGRABLE GENERALIZATION OF THE TODA LAW ...

We first remark that the five-point schemgsl) on the

star of the square lattice are the simplest and most natural

generalization of the three-point schen{8s Therefore we
expect that our Toda 2D lattiq®) will be the simplest inte-
grable generalization of E@l) on the square lattice.

We also remark that the Toda 2D-lattice syst@ncan be
rewritten as a single equation, observing that E2p) is
identically satisfied by the following parametrization:

Ty

Tr+1,n+1

_ Tm+1nTmn+1

m,n
TmnTm+1n+1

C (16)
in terms of the single scalar field, ,. Then the systeni2)
reduces to the single equation

VV[7'm+1,n7'm,n+1:VV[7'm+1,n+1v 7'm,n]]

= Tmel, n(Tm nTmn+2 ~ Tm+1n+1Tm-1, n+1)

+7h 17)

n+1(7m nTm+2n = Tmt1,n+17m+1n- 1

where

Wa,B] = aB- apB (18)

is the usual Wronskian of the two functionsandg. It turns
out [25] that the scalar functiorr,,,(t) is related to ther
function of the Kadomtsev-Petviashvili hierarchy of type B
(BKP hierarchy [26]; therefore Eq(17) gives ther-function
formulation of the(2+1)-dimensional Toda systeii2).

If the 7 function depends only om, 7, ,(t)=7,(t), EQ.
(17) reduces to the equation

TonsaHL 7] = 7oH[ 1] = 0, (19
where
HL 7 5= TinTim = 7+ Tt 1 Tt = T (20)
implying that
Hl7l = f(O) 7, (21)

with f(t) an arbitrary function of. By the change of variable
T =exd-y(t)]m,(t), with y(t)=f(t), we recover the
7function formulation[4] H[7,,]=0 of the Toda lattic&1).
We finally remark that,C=const andl'=e(CF21 js the
trivial solution of Eq.(12); correspondinglyQ=-FCt grows

linearly in time. Solutions that are perturbations of this solu-

tion will exhibit such a linear blowup in time, which can be
removed by introducing the change of variab@g,=P
—FCt+46. Then Eq.(2) becomes

el

m,na

m,n

dPmn

C
dt

+ FC) :| m(Cm nCm—l neAm m-1 n)

m,n

+ An(Cm,nCm,n—leAan’"_l) )

Cm+l n+l
Cm,n

= e_AmAan,n_ (22)
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lll. DARBOUX-BACKLUND TRANSFORMATIONS AND
THEIR SUPERPOSITION

It is a straightforwardbut long) calculation to verify that
the DBTs for the 2D generalization of the Toda latt{de)
and(2) read as follows:

r Lo it
Al oy —__-mn 10 0. A m,n,
m( T ¥ )m,n rm,n mnZmn-1=-n Omn
I . 'r//
A _0 ’ - — m_l,na 9 _ A_ m’na
n( T W )m,n Fm,n mnmn-1 mng,n
d/1r’ '
Gl ) st
X(‘/fm—l,n _ M) (23
am—l,n em,n—l
, 2 an
T12= (O, (243
Omn
(Fe)m_l n(I'O)mn-1
C/ ) d C , 24b
" DmnT Deraa 0
1 1 0m n |: ( F)
Flo=(TOm1n + o \e
mn ( )m—l,n 1|: (Fa)m—l,n (Fe)m’n_1:| Fm’n 6 m-1n
r
. (_) } , (240
0/ mn-1

where A_pfn=fn—f1n and A= —fr -1, In these
equations,dp,n(t) is a solution of the Lax paifll) for the
coefficientsl',, Frny Crns #,n(D) in EQ. (23) is the trans-
formed(via 6, ) solution of the Lax pai(ll) for the trans-
formed|[via Eq.(24)] coefficientsI'), ., Fr. .. Chp

The so-called spatial part of the above DBTs was already
written in [20]; the temporal part, describing the time depen-
dence of the transformed solutigi, (t) of Eq.(11), and the
transformation law24b) for the coefficieniC,, ,(t) were not.

It is well known [28] that it is possible to combine DBTs
of a given integrable system, to construct superposition for-
mulas and a permutability diagram of DBTs. For the 2D
Toda lattice(12) and(2) it is possible to prove the following
result(see alsd25] for the Bianchi permutability diagram of
the general self-adjoint scheme on the star of the square lat-
tice). Consider a solutionl'y, n,Fmn,Cnn) Of the 2D Toda
lattice (12) and(2), and Ieta(l) and 6(2 be two independent
solutions of the Lax pa|(11) correspondmg to the coeffi-
cientsI'y,, F mny Cmn Supenmposmg the two DBT&3)
with respect t00 , and 0 , one obtains the new solution
&2 Fo2 ch 12)) of the honlinear system(12) and (2)
through the foIIowmg formulas:

We end this section by remarking that algebrogeometric

solutions of the eigenvalue problem for a generic five-point

scheme were constructed [iB7].

2m,n

Em+1,n+1

(M%) 2= (T
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1 Iﬂm—l,n

2m,n+1 I‘m,n+1

(12 _ 1) (2) (1) 2)
I:m+1,n+1 = I:m,n + (a(m—l,nem,nﬂ - 6m,n+19(m—1,n)

1 Fm n=1, 1 2 1 2
+ 2 1 r 1 (g(mll,neﬁn,)n—l - agn,)n—lg(mj—lyn)
m+1ln+ m+ln
2
_ Em,n2m+1,n+1|:|: + 1 Fm,n
- m,n
2m+1,n2m,n+l 2m+1,n+l l_‘m+1,nl_‘m,n+1
1T I'
1 2 1 2 m-1,n' mn-1
><(e(m,)n+1‘9(r’r‘r:l,n - agnllnaﬁn,)nﬂ) + T
m,n

2m,n

2 1 2
m,n—lg(mzl,n - af“nll,ném,)n—l):| )

X (6

c2 _ (rm+1,nrm,n+1)zznml,nzm,nﬂ

m+1n+l~—

Cm+1,n+1v (25)

Fm,nl_‘rrr+1,n+1 2m,nzrml,ml

where the function®,, , is obtained by integrating the first
order compatible equations

d 1_‘m—l,nl_‘m,n—l 1 2 1 2
d_tzm,n = Cm,n Fz (‘9511,)n—1 mzl,n - ainzl,naﬁn,)n-l )
mn
r ,n-1 1 2 1 2
2m+1,n - 2m,n = an (g(m,)n—lgﬁn,)n - egn,)nagn,)n—l )
mn

i1
=— vn(g(n?na(nal,n_

mn —
l_‘m,n

2m,n+1 -2 agll,na(rﬁ,)n) . (26)
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In this section we show some examples of explicit solu-
tions of exponential and rational type of the 2D Toda lattice
(2), obtained using the DBT4).

We consider as starting solution of the systei®) the
trivial one, corresponding t&,C constants and’=eF&/2t
(for this solutionQ=-FCt) and, correspondingly, we look
for an exponential solution of the Lax pditl):

Ym(t) = @A, (27)

obtaining for the coefficienta, 8, w the following equations:

(28a)

F
cosha + coshB = Py

sinha+sinhﬂ:g. (28b)
These equations can be interpreted in the following way:
given the constants,C, Eq. (289 establishes a constraint
between the “wave number&’and B; once this constraint is
satisfied, Eq(28b) gives the “dispersion relationd in terms

of @ and .

Looking for real and nonsingular solutions of exponential
type, in the following we restrict our analysis to the case
F.C,a,B8,0€R, postponing the study of other possible
choices to a subsequent work. Then E2B) implies thatF
=4 and that the parameters and 8=cosh*(F/2-cosha)
must range in the interval

F
1 < cosha, coshB < 5 1, F=4 (29
(if F=4, thena=£=0).

We consider now the following solution of E¢L1):

This scheme is often used to construct the two-soliton solu-

tion knowing the one-soliton solution of the systéim this

case aﬁﬁ)n and Gg)n

IV. SOLUTIONS OF EXPONENTIAL AND RATIONAL
TYPE

are the eigenfunctions of the one-soliton
solution corresponding to two different sets of parameters

Omn(t) = cosh®;, (t) + p cosh® (1),

w* := C(sinha = sinh B),
(30)

consisting of a suitable combination of four exponentials of

05 (1) := am= Bn+ o't + &,

the type(27), wherea, B8 satisfy the constraini28a), andp

The existence of DBTs is considered one of the basic=0, & < RR.

properties of an integrable nonlinear system. In particular, it

Applying the DBTs(24) to this basic solution, one obtains

allows one to construct iteratively solutions from simplerthe following dressed solution of the 2D Toda latti(E2)

solutions, via an endless procedure.

_cosh®; ;. () +pcoshO ;. 4(t) o

and (2):

Fl{nz,n = e_Qr,n,n(t) =

cosh@y, ,(t) + pcosh@_, (1)

[cosh@®;, 1 (1) + pcosh®, _; (t)][cosh@y, (1) + pcoshO, (1]

Con(®) =

[COSh®?, (1) + p COShE}, (D T[COShOF, 1, 4(1) + p COShOy, 11 4(1]

(31

056615-4
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FIG. 1. (Color onling If p=0 anda,B e R (F>4), the solution

Qmnt+FCtin Eq. (31) describes a smooth 2D shock wave propa-

gating with velocity v*=—(w*/2)sin(26)(1/5,1/a). The shock
front is a straight line forming the anglef; #=tar*(a/ 8) with the
m axis. In this figurea=5, =4 (F=101), 5=1,C=1, p=0.

This solution exhibits, depending on the valuepat 0, the
following different features.
(i) If p=0, we have the simplified expression

cosh®;,_; _4(t) et
cosh®y, ,(t)

Fr’nzn = 'Qr’n,n(t) =

[cosh@®,,_; ,(D][coshO; . 1(D)]
[cosh@?n’n(t)][cosh@}kl’n_l(t)]C' 32

Crn(®) =

This solution describes a smooth 2D shock wéaekink);
the shock front is the phagstraigh) line ®*=const,form-
ing with them axis the angle 6, with =tari'(a/B). This
shock wave propagates with speed=—(w*/2)sin(26)
X(1/B,1/a). The values on,’nyn+FCt ahead and behind
the shock front are, respectively(a+8) and a+ 3; then
the shock strength is(2+g) (see Fig. 1

(i) If pis a finite positive number, the solution describes

PHYSICAL REVIEW E 70, 056615(2004)

FIG. 3. (Color onling A view from the top of the solution for
p=10". In the centralfinite) region, the single shock prevails; this
single shock matches with the two orthogonal shocks, which prevail
instead in the outer region. In this figute=5, 8=4 (F=101), &
=1,C=1,p=10".

before, with the phase lines; they are now parallel torthe
andn axes and intersect iR, dividing the(m,n) plane into
the usual four quadrants. The values®f,+FCtin the first,
second, third, and fourth quadrants are, respectiveis,
-a+3, —(a+p), anda—p (see Fig. 2

(iii) If pis a very small positive parameters<(p<1, the
previous two regimes combine in the following way. In the
finite (m,n) plane[or, more precisely, in an inner region of
the orderO(In(1/p))], the termp cosh®~ is negligible and
the expressiofi32) is a good approximation of the solution,
which then describes the single transversal shock wave of the
regime (i). In the outer region, that term is not negligible
anymore and the regini{@) becomes dominant. Both ends of
the transversal shock front bifurcate into two semilines par-

two smooth 2D shock waves with the following features. The

phase(straighy lines ®*=const form with them axis the
angles ¥ ¢, they travel with speeds/*=—(w*/2)sin(26)
X(1/B8,+1/a) and, consequently, their intersection poiht
travels with constant speag=-C((sinha)/«,(sinhB)/B).

In this situation the two shock fronts do not coincide, as

FIG. 2. (Color onling For «,BeR (F>4) and p=0(1), the
solution Qn, ,+FCt in Eq. (31) describes two shock waves with
fronts parallel to then andn axes. The intersection poiRtof these
two fronts travels with velocitwp=-C((sinha)/ a,(sinhB)/B). In
this figurea=5, =4 (F=101), §'=1,C=1, p=1.

FIG. 4. (Color online A generic view of the solution fop
=10". In the centralfinite) region, the single shock prevails; this
single shock matches with the two orthogonal shocks, which prevail
instead in the outer region. In this figute=5, 8=4 (F=101), &
=1,C=1,p=10".
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allel to them and n axes(see Figs. 3 and)4 One could
actually say that the regim@i) is the generic one; but, for

p=0(1), the inner region is not visible, since it is smaller

than a single elementary square of the square lattice).

PHYSICAL REVIEW E70, 056615(2004)

Omn(t) :== mn+ (Ct+a)m+ (Ct+b)n+ C4*+ C(a+b)t +d
(33

is a polynomial solution of the systel), wherea, b, d

The inner region is visible if it contains at least one elemenyre arbitrary constant coefficients. Substituting it into the
tary square of the lattice. If the spacing of the square lattic)BTs (24), one obtains @singulay rational solution of the

is 1, a rough extimate for this condition is that
0<p<min(1l/(|ale),1/(|Ble)), where e is the Neper
constant.

2D Toda lattice. We remark that this solution could have
been derived directly from the solutiai31) for a suitable
choice of its free parameters.

The possible existence of weblike structures in the inner

region, typical of(2+1)-dimensional soliton model§29],
will be explored in a subsequent work.

Starting with the ftrivial solutionF=4, C const((0 I"
=e*CY) of the system(12), it is also possible to construct

rational solutions. It is straightforward to verify, for instance,

that
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